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Purpose. Typically, the kinetics of membrane transport is analyzed using the steady-state MichaelisY
Menten (or EadieYHofstee or Hanes) equations. This approach has been successful when the substrate

is picked up from the aqueous phase, like a water-soluble enzyme, for which the MichaelisYMenten

steady-state analysis was developed. For membrane transporters whose substrate resides in the lipid

bilayer of the plasma membrane, like P-glycoprotein (P-gp), there has been no validation of the accu-

racy of the steady-state analysis because the elementary rate constants for transport were not known.

Methods. Recently, we fitted the mass action elementary kinetic rate constants of P-gp transport of three

different drugs through a confluent monolayer of MDCKII-hMDR1 cells. With these elementary rate

constants in hand, we use computer simulations to assess the accuracy of the steady-state MichaelisY
Menten parameters. This limits the simulation to parameter ranges known to be physiologically relevant.

Results. Using over 2,300 different vectors of initial elementary parameters spanning the space

bounded by the three drugs, which defines 2,300 Bvirtual substrates^, the concentrations of substrate

transported were calculated and fitted to EadieYHofstee plots. Acceptable plots were obtained for

1,338 cases.

Conclusion. The fitted steady-state Vmax values from the analysis correlated to within a factor of 2Y3

with the values predicted from the elementary parameters. However, the fitted Km value could be

generated by a wide range of underlying Bmolecular^ Km values. This is because of the convolution of

the drug passive permeability kinetics into the fitted Km. This implies that Km values measured in

simpler systems, e.g., microsomes or proteoliposomes, even if accurate, would not predict the Km values

for the confluent monolayer system or, by logical extension, in vivo. Reliable in vitroYin vivo ex-

trapolation seems to require using the elementary rate constants rather than the MichaelisYMenten

steady-state parameters.

KEY WORDS: elementary rate constants; MichaelisYMenten; P-gp; pharmacokinetic extrapolation;
transcellular transport.

INTRODUCTION

The clinical and biological relevance of the human mul-
tidrug resistance transporter P-glycoprotein (P-gp) has been
demonstrated through a large number of in vitro, preclinical,
and clinical studies (1Y6). A variety of in vitro expression

systems have been used to study P-gp: suspension cells over-
expressing P-gp, lipid reconstitutions of purified P-gp, plasma
membrane vesicles, and more recently confluent cell mono-
layers (7Y24).

Kinetic studies of P-gp transport have been analyzed
using versions of the steady-state MichaelisYMenten analysis
(12,13,16Y19,21,25Y32). Although the fitted Vmax, Km, and
sometimes a BHill^ number are acknowledged as phenome-
nological coefficients, the implicit assumption is that these
fitted parameters correlate reasonably well with the molec-
ular values defined by the elementary rate constants of the
transporter reaction, according to the classical MichaelisY
Menten derivation (33). Otherwise, the fitted values would
have no physical significance and little predictive value.

The MichaelisYMenten analysis was developed for
soluble enzymes, which bind substrate directly from the
aqueous phase to which the substrate is added initially.
Therefore, it applies well enough to membrane transporters,
which bind their substrate directly from the water phase, e.g.,
glucose permeases (25). It seems to apply to the ATPase
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activity of P-gp because that activity resides in the cytosolic
domain of P-gp (7,10,12,14,15,20Y22), even after detergent
reconstitution (34). However, P-gp picks up drugs from the
inner apical monolayer of the cell (35), which is a permeation
barrier away from substrate added to either face of a
confluent cell monolayer.

For the confluent cell monolayer system, evaluation
of the correlation between the steady-state parameters and
the underlying elementary rate constants can be performed
using computer simulations, i.e., where model transport data
are calculated according to known elementary rate constants
and other parameters relevant to this expression system.
When these model data are fitted to an EadieYHofstee
plot, the validity of the correlation would be known. To
date, this simulation has not been performed, perhaps
because the potential parameter space for the elementary
rate constants is immense (24). It is almost a priori likely
that in some parameter domains, the correlation would be
good, and in other parameter domains, it would be poor.
Without knowledge of which domains were physiologically
relevant, the computational exercise would have little
significance.

In Tran et al. (24), we fitted the elementary rate
constants, passive permeability coefficients, and estimates
for partition coefficients for P-gp transport experiments using
MDCKII-hMDR1 cell monolayers for the P-gp substrates
amprenavir (an HIV protease inhibitor), quinidine (a Na+

channel blocker), and loperamide (an antidiarrheal drug).
These physiologically relevant elementary parameters permit
us to construct a parameter domain space, bounded by the
specific values for the three drugs, within which we can
simulate model data and test the accuracy of the steady-state
analysis.

We show here that if P-gp mediated transport in the
confluent monolayer system is as simple as modeled and fitted
in Tran et al. (24), the steady-state analysis for the Michaelis
constant Km cannot be estimated accurately, even if the data
have no error. Despite well-fitted EadieYHofstee plots, the
estimated Km value can be 2-3 orders of magnitude larger
than the true molecular value, as calculated from the ele-
mentary rate constants used to generate the model transport
data in the first place. If it turns out that the kinetic model
of P-gp transport for the confluent cell monolayer system
is more complex than our minimal model (24), as is likely to
happen over time, then the MichaelisYMenten steady-state
analysis would be even more inaccurate.

It is likely that the inherent inaccuracy of a fitted Km

would hold for any expression system, which has a perme-
ability barrier between the P-gp binding site and the donor
aqueous phase, e.g., suspension cells and Bright side out^
microsome and proteoliposome preparations. This has not
been tested. Nevertheless, even if the Km was accurately
measured in one of these simpler systems, our results prove
that this number cannot reliably predict the Km, which would
be found for the confluent monolayer system and, by
extension, for tissue. This is true regardless of the additional
complicating effects of lipid composition and membrane
asymmetry on P-gp activity (40,41). Any extrapolation from
in vitro data to in vivo transport must begin by using the
elementary rate constants and associated parameters to have
a hope for accuracy.

Understanding the mechanism of P-gp transport will
require input from many expression systems, from the
simplest purified protein reconstitution to the physiologically
relevant confluent cell monolayers. Furthermore, each sys-
tem must be analyzed by the most accurate kinetic expres-
sions available. Otherwise, the kinetic analysis itself will
obscure the mechanism.

MATERIALS AND METHODS

Materials

Amprenavir and GF120918 were from GlaxoSmithKline
(Research Triangle Park, NC, USA). Loperamide was from
Sigma (St. Louis, MO, USA) and quinidine from Fisher
Scientific (Fair Lawn, NJ, USA). 3H-Loperamide (10 Ci/
mmol) and 3H-amprenavir (21 Ci/mmol) were custom
synthesized by Amersham Pharmacia Biotech (Little
Chalfont, Buckinghamshire, England). 3H-Quinidine (20 Ci/
mmol) was from ICN Biomedical, Inc., Costa Mesa, CA,
USA. Dimethyl sulfoxide was from Sigma-Aldrich,
Deisenhofen, Germany. Dulbecco’s Modified Eagle
Medium (DMEM) was from MediaTech, VWR, Herndon,
VA, USA. Transport medium (DMEM with 25 mM HEPES
buffer, high glucose, L-glutamine, pyridoxine hydrochloride,
without sodium pyruvate, and without phenol red) was from
Gibco, Gaithersburg, MD, USA. Cholesterol and porcine
brain lipids were from Avanti Polar Lipids, Inc. (Alabaster,
AL, USA). Transwell 12-well plates with polycarbonate
inserts were obtained from Costar (Acton, MA, USA).
Ultima Gold scintillation cocktail was from PerkinElmer
Life Sciences (Boston, MA, USA).

Compound Selection

These drugs were chosen because they are good P-gp
substrates, are chemically unrelated, and show different mass
balance problems (22). Furthermore, amprenavir shows no
evidence for transport saturation (36), rendering the standard
MichaelisYMenten analysis of P-gp transport useless.

Cell Line and Culture Conditions

The MadinYDarby Canine Kidney cell line, which over-
expresses human MDR1 (MDCKII-hMDR1), was purchased
from the Netherlands Cancer Institute (Amsterdam, Nether-
lands) (37). Cells were split twice a week and maintained in
culture medium (DMEM supplemented with 10% fetal
bovine serum, 50 U/ml penicillin, and 50 mg/ml streptomy-
cin). Cells were kept at 37-C in 5% CO2.

Transport Assays

Cells were seeded in 12-well plates at a density of
200,000 cells per insert and grown for 4 days in culture
medium. Cells were given fresh media 1 day after seeding.

Prior to the experiment, culture medium was removed
and cells were preincubated for 30 min with either transport
medium alone (see above) or transport medium supplemented
with 2 mM GF120918 to inhibit P-gp (36,38). Transport of a
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range of concentrations of amprenavir, loperamide, and
quinidine across the confluent monolayer of cells was mea-
sured in both directions, i.e., apical to basolateral (A > B) and
basolateral to apical (B > A) in the presence and absence of
GF120918. For incubations in the presence of GF120918, the
inhibitor was added to both chambers. An amount of 0.5 mCi/
ml of 3H-amprenavir, 3H-quinidine, or 3H-loperamide was
added to each respective drug concentration to allow
quantification of transport from donor to receiver chambers
by liquid scintillation counting. In addition, 14C-mannitol
(0.75 mCi/ml) was added to monitor cell monolayer integrity.
At the indicated time points, 25-mL samples were taken from
both donor and receiver chambers, mixed with 10 ml of
Ultima Gold scintillation cocktail, and counted using a
Hewlett Packard Liquid Scintillation Counter. The first time
point taken was after 6 min, and we used these data as the
starting point for fitting. This eliminated the need to correct
for some drug binding to the Costar Transwell apparatus and
other initial transient effects (23,24).

Cell Stability and Drug Metabolism

We showed that the stability of the cell monolayer and
plasma membrane with respect to passive and active trans-
port was not affected by the prolonged exposure times to
amprenavir for at least 6 h (23). It was also shown that
metabolism or decomposition was insignificant for all drugs
on this time scale using radio-high-performance liquid
chromatography.

Numerical Integrations

We used the stiffest integrator in MATLAB, ode23s,
with absolute and relative tolerances set to 10j10. Other
MATLAB integrators, although faster, were not accurate
enough at the later times of simulations.

Further details can be found in Tran et al. (23,24).

KINETIC MODEL OF TRANSPORT ACROSS
A CONFLUENT CELL MONOLAYER

Figure 1 is a cartoon of a confluent cell monolayer,
with P-gp (upward arrows) expressed on the apical sur-
face. MDCKII-hMDR1 cells polarize with the basolateral
membrane attached to the polycarbonate filters (39). The
apical and basolateral chambers are kept separate by the
tight junctions. Passive transport occurs and is separately
analyzed using a potent P-gp inhibitor (24). Active transport
by P-gp occurs vectorially, with substrate binding to a site on
P-gp within the apical membrane inner monolayer and with
efflux into the apical chamber (4,12,24,35). We can measure
the concentration of substrate in the apical chamber, denoted
CA, and the basolateral chamber, denoted CB. However, the
concentration of substrate in the inner plasma membrane in
contact with the P-gp binding site, denoted CPC, cannot (yet)
be measured rigorously in real time. All these concentrations
are variables of the mass action model and fitted according to
the measured values of CB and CA over time (24).

We used the simplest MichaelisYMenten mass action
reaction to model P-gp:

T0 þ CPC
kr

k1
±T1 Y

k2
T0 þ CA ð1Þ

where T0 is the empty transporter, CPC is the substrate in the
apical membrane inner monolayer, T1 is the transporter
bound by substrate, and CA is the substrate after efflux into
the apical chamber. ATP hydrolysis is not part of this model
because it occurs intracellularly and cannot (yet) be mea-
sured rigorously in real time. However, we found that the
cells do not lose any capacity for drug transport over
6-h incubations (24) (Acharya and Bentz, unpublished data),
implying that cellular ATP levels remain adequate for full
P-gp function throughout the experiment.

Table I shows the mean consensus values of the
elementary parameters used to fit the transport kinetics of
amprenavir, quinidine, and loperamide (24). Each parameter
fitted had a range that gave excellent fits to all the data for
over 6 h of transport. The values shown in Table I are the
mean values of the range.

Although the precision of these estimates varies by fitted
parameter, that precision is not important for this work. We
only use these mean values for each of the three drugs to
create a boundary for the values of the Bvirtual substrates^. If
the values of the means shown in Table I were increased or
decreased within their standard deviations, there would be
no effect on our conclusions. The only important point is
that the parameter values used here are physiologically
relevant, and that this is not simply a theoretical Bresult^.

We found that all three drugs had essentially the same
rate constant for association to P-gp, denoted k1, and
essentially the same estimated surface density for efflux
active P-gp, denoted T(0), which was a benchmark for our

Fig. 1. Model of a confluent cell monolayer, with the apical membrane

on top and the basolateral membrane on the bottom, where it binds to

the polycarbonate insert. Passive permeability occurs in both direc-

tions. P-glycoprotein (P-gp) expressed on the apical membrane trans-

ports drug from the inner apical membrane monolayer into the apical

chamber. The concentrations of drug in the apical and basolateral

chambers, CA and CB, are measured, whereas the concentrations of

drug in the inner plasma membrane, CPC, and the cytosol, CC, are pre-

dicted as part of the data fitting process described in Tran et al. [24].
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model and analysis (24). Discussion of how the values in the
table make considerable sense for P-gp function and struc-
ture can be found in Ref. (24). In our simulations, these two
parameters are held fixed at the values shown.

This leaves four kinetically significant parameters char-
acterizing individual substrate interaction with the confluent
cell monolayer and P-gp, all of which are sensitive to the
membrane composition and /or morphology:

(1) k2T(0), which is the true molecular membrane Vmax

of the substrate efflux by P-gp. Because T(0) is assumed to
be substrate independent, the efflux rate constant k2 is sub-
strate specific.

(2) KB, which is the binding constant of the substrate to
P-gp from the inner monolayer of the apical membrane.

(3) KPC, which is the partition coefficient of the
substrate between the inner monolayer of the apical mem-
brane and the cytosol of the cell. The product of KPCKB is
the binding constant to P-gp relative to the cytosolic
concentration of substrate. The two other partition coeffi-
cients, KBO, between the basolateral chamber and the outer
basolateral membrane monolayer, and KAO, between the
apical chamber and the outer apical membrane monolayer
(see Fig. 1), are also fitted independently. However, we
found that they roughly scale with KPC, as explained in the
legend to Table I (24). We have used this scaling to simplify
the calculations, but we show below that the particular
scaling does not alter any conclusions.

(4) P, which is the passive permeability coefficient of
the substrate through the confluent cell monolayer, i.e., when
P-gp is inhibited. For these simulations, we treat the cells as
static permeability barriers, so that P is constant in time and

the same in both directions. Reality is more complex. We
found transients in the passive permeability coefficients
which depended on the substrate and upon which cell
membrane faced the donor chamber, i.e., apical or baso-
lateral (23). To accurately fit the P-gp transport parameters,
these transients had to be subtracted from the total transport.
Here, for simplicity, these transients will be ignored because
their inclusion would make the analysis more complex
without affecting any of our conclusions.

The steady-state equation for the MichaelisYMenten
reaction can be written as:

V tð Þ ¼ VmaxSb

Kb
M þ Sb

ð2Þ

where S is the initial subst1rate concentration and V is the
substrate transport velocity in the steady-state period,
denoted as some time t. When the EadieYHofstee plot is
curved, the b in Eq. (2) is the simplest way to Bfit^ the
curvature to obtain a better estimate for Km. Note that in this
definition, when S = Km, then V = 0.5Vmax, as is the textbook
version.

Clearly, transport through a confluent cell monolayer is
more complex than enzyme activity in aqueous solution, for
which the MichaelisYMenten steady-state analysis was devel-
oped. However, the fitting of transport data using the steady-
state equations is simple, and the steady-state kinetic
equations are very elastic, i.e., they can fit many hyperbolic
data sets quite well. Many sigmoidal data sets can be fitted
by adding the BHill^ coefficient b. Unfortunately, having an
r2 value or correlation coefficient near 1, or a nonlinear

Table I. Parameter Values for Simulationsa

Substrate

Efflux active P-gp

density, T(0)b

(P-gp/mm2)

Association to

P-gp, k1
c

(Mj1 sj1)

Efflux to apical

chamber,

k2
d (sj1)

Passive permeability

coefficient,

P e (nm/s)

Partition

coefficient,

KPC
f

Binding

constant,

KB
g (Mj1)

AMP 40 3 � 10+9 200 200 200 1,300

QND 40 3 � 10+9 15 300 700 6,000

LPM 40 3 � 10+9 5 100 3,000 150

Simulation

range used

40 3 � 10+9 2Y400 50Y1,000 100Y5,000 100Y10,000

a These are mean values obtained for each of the elementary parameters fitted in Tran et al. (24). Because we are using these values to
simulate the transport of Bvirtual^ substrates, whose physiochemical characteristics are defined between the drugs tested (amprenavir,
quinidine, and loperamide), the error on the original fits is not relevant.

b Mean values for the density of efflux active P-gp in the apical membrane inner monolayer for each of the three drugs. As discussed in Tran
et al. (24), this number can be roughly ten times smaller than the true surface density, perhaps due to the microvilli.

c Mean value for each of the three drugs. This is the rate constant from flip-flop across the basolateral membrane to association with the P-gp
binding site. The route appears to be largely lateral diffusion controlled through the inner plasma monolayer, and the magnitude suggests
that it is limited only by lipid lateral diffusion.

d Mean value for the efflux rate constant.
e This is the steady-state value for the drug’s passive permeability coefficient. In reality, the passive permeability coefficients took from 15 min

to 3 h to reach steady-state and P(B > A) was not the same as P(A > B) until their steady state was reached (23). Using these transient
conditions would make the calculations and explanations much more complex, without changing any conclusions. We assumed the ideal
situation of a static symmetric passive permeability barrier.

f In reality, three partition coefficients are needed to simulate model data: KPC is between the cytosol and the inner plasma monolayer; KBO is
between the basolateral chamber and the outer basolateral monolayer; and KAO is between the apical chamber and the outer apical
monolayer. As explained in Tran et al. (24), direct measurements using cells would be difficult because the drugs used are so permeable that
only cell average partition coefficients could be obtained. Partition coefficients were estimated using 0.1 mm extruded unilamellar liposomes
whose lipid compositions mimic, in a very simple way, the lipid compositions of the respective membrane monolayers. For the three drugs
tested, the ratio of partition coefficients scaled roughly as KBO $ KPC /3 and KAO $ KPC /10. This scaling was used for the model data shown.
However, because the scaling was rough, all of the simulations were also done with KBO = KAO = KPC. The conclusions were the same, i.e.,
Figs. 8 and 9 looked the same. The scaling only changes absolute values of steady state parameters, but not the correlations.

g Mean value for the drug binding constant from inner apical membrane monolayer to P-gp.
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equivalent, does not mean that the fitted parameters are
physically meaningful.

Calling. b a Hill number or coefficient suggests that its
value is an estimate for the number of binding sites on the
transporter. We will use the b coefficient to give the steady-
state analysis the best opportunity to fit the Km for the P-gp
mediated transport data. Despite the fact that the model data
are simulated for a P-gp with a single binding site, we will see
below that for the confluent cell monolayer system, b > 1 is
typical. In other words, for the confluent cell monolayer, b >
1 does not prove that P-gp has more than one binding site.

By dividing top and bottom of Eq. (2) by S, we can
rearrange the equation into log-linear form:

log
Vmax

V tð Þ � 1

� �
¼ �b log Sf g þ b log Kmf g ð3Þ

Below, we will show how these equations can be used to best
estimate Vmax and Km for the confluent monolayer system,
using both experimental data and model data. Once the
protocol is developed, we move to the real focus of this work,
which is to assess the accuracy of the steady-state equations
to predict the underlying molecular values.

RESULTS

The passive and active transport of 10 mM quinidine
across the MDCKII-MDR1 cell monolayers is shown in Fig. 2.
The passive permeability was determined in the presence of
2 mM GF120918, a potent inhibitor of P-gp (23,24,36,38). The
nmol transported is symmetric (i.e., the same for B > A and
A > B) over time when efflux is inhibited with GF120918
(closed symbols), as expected for a static passive barrier (23).
The open symbols show the total transport when P-gp is
active (without GF120918), with clear P-gp mediated activa-
tion of transport in the B > A direction and inhibition of
transport in the A > B direction. Relative to passive
permeability, the activation of B > A transport by P-gp, i.e.,
from the basolateral chamber to the apical chamber,
illustrated by the length of the arrow aimed up, was always
greater than the inhibition of A > B transport by P-gp, i.e.,
from the apical chamber to the basolateral chamber,
illustrated by the length of the arrow aimed down. Remark-
ably, this simple test is diagnostic for there being only two
barriers to active transport (24). If there were an additional
kinetic barrier between the basolateral membrane inner
monolayer and the apical membrane inner monolayer, e.g.,
substrates following a path through the cytosol, then the
predicted shape of Fig. 2 would be just the opposite. The
activation arrow would be shorter than the inhibition arrow
(simulations not shown). The reason for this is that the ad-
ditional barrier slows access of substrate to P-gp from the
basolateral side, reducing activation, whereas transport from
the apical side is further inhibited since the rate of drug escape
to the basolateral membrane is reduced by the additional
barrier, allowing more reuptake by P-gp. Other drugs have
shown this Btwo-barrier^ shape (19). Of course, this diagnos-
tic can identify substrates for which there is a third barrier.

The activity of P-gp (nmol transported/h), i.e., V in the
MichaelisYMenten equation [Eq. (2)], is typically obtained in
the following way. We denote A:B > A as the transport into

the apical chamber when the basolateral chamber is the
donor. Then the total A:B > A transport (without P-gp
inhibitor) minus the passive A:B > A transport (with P-gp
inhibitor) is assigned to P-gp transport. We showed that this
practice is accurate only if there is no backflow of substrate,
which is more or less correct depending on the experiment
(24). However, here we have followed the common practice
for data analysis using the MichaelisYMenten steady-state
equations and ignored backflux.

Figure 3 shows the EadieYHofstee plot for 0.3, 1, 3, 10,
20, and 30 mM quinidine. The slope, V, was taken from the
2-h data point of Fig. 2. This is a typical time for confluent
cell monolayers. Choosing time points in the range of 1Y4 h
makes little difference, which will be shown below. How-
ever, choosing shorter time points would give incorrect
results. The time point chosen to determine V must be
somewhere within the steady-state phase of transport,
defined as a constant amount of bound transporter, for
the steady-state equations to have any validity. For a
soluble enzyme, that can happen within sample mixing
time. However, for the confluent cell monolayer, passive
permeability through the donor membrane must occur first.
For P-gp expressed in a confluent cell monolayer to
achieve steady state required at least an hour for the three
drugs we tested because of passive permeability through
the membranes slows the binding reaction (24). A substrate
with a higher passive permeability coefficient could be
sampled at an earlier time, as shown below.

For a soluble MichaelisYMenten enzyme, the EadieY
Hofstee plot should be a straight line with a slope of jKm

and a y-intercept of Vmax. The fitted straight line in Fig. 3 has

Fig. 2. The passive and active transport of quinidine across the

monolayer of confluent MDCK cells is shown by nmol in the receiver

chamber, over 6 h when the donor side begins with 10 mM quinidine.

The filled symbols show passive permeability across the cell

monolayer when the basolateral chamber was the donor side, B >

A (r), and when the apical side was the donor, A > B (Í). The

active transport by P-gp was completely inhibited by preincubation

with 2 mM GF120918, added to both chambers. The empty symbols

show the effect of P-gp on transport of quinidine across the cell

monolayer, which occurs in the absence of GF120918. The fact that

the activation of transport in the B > A direction over the passive

transport by P-gp, the up arrow, is greater than the inhibition in the

A > B direction, the down arrow, proves that there are only two

barriers to transport, as explained in Tran et al. [24]. That is,

transport through the cytosol is kinetically insignificant.

1671Elementary Rate Constants vs. the Steady-State Kinetic Transport Parameters



Km = 4 mM and Vmax = 2 mM/h. Our fitted value for the Km of
quinidine is within a factor of 2 of the published value using
the Caco-2 cell line (19). The EadieYHofstee plot for
loperamide was similar (data not shown). Amprenavir
showed no saturation up to 100 mM, i.e., no steady-state
analysis was possible for this drug, despite the fact that the
elementary rate constants could be fitted quite well (24).

The scatter in the data from the straight line is not a
result of poor experiments. The EadieYHofstee plot in Fig. 3
appears curved, but this hypothesis would be difficult to
defend statistically. To show that the plot is curved, we turn
to model data, simulated using the mean values of the fitted
parameters shown in Table I. The mass action differential
equations used to simulate the model data are given in Tran
et al. (24). The parameters in Table I for quinidine gave good
fits for the transport of quinidine from 15 min to 6 h (24), so
it is no surprise that the EadieYHofstee plots generated from
the simulation would fit the data points shown in Fig. 3 (data
not shown).

Figure 4 shows the EadieYHofstee plot for these model
data, without error, and it is obviously curved. Only at high
quinidine concentrations, where V/S Y 0, does the curve
straighten toward the correct Vmax, i.e., the value calculated
from the parameters used in Table I. The same behavior was
found for model data for loperamide and amprenavir
(simulations not shown). Interestingly, the amprenavir model
data only started showing saturation only above 150 mM,
which we could not achieve experimentally.

One consequence of fitting Vmax using linear regression
of all of the data points would be to overestimate the Vmax.
For the confluent monolayer expression system, Vmax should
be estimated using only the highest substrate concentrations
available. For model data mimicking quinidine, Vmax = 1.17
mM/h (Fig. 4). This is closer to the value for the quinidine
data in Fig. 3, when only the highest three concentrations are
used there. Of course, this protocol works for a transporter
with a single binding site or multiple independent sites. More
complex transporters would require a more sophisticated
analysis, but it is unlikely that the basic conclusions we reach
here would change. It is worth noting here that the curvature
of the EadieYHofstee plot is not a result of complicating

effects, such as self-inhibition, because the model does not
include them.

The primary cause of the curvature in the EadieYHofstee
plot is the passive permeability. At low quinidine concen-
trations, the fraction of P-gp bound after 2 h is much less than
what would be predicted simply from the drug-binding
constant to a soluble enzyme because a true steady state has
not yet been reached (simulation not shown).

Figure 5 shows the EadieYHofstee plots for model data
mimicking quinidine using the elementary parameters from
Table I, except that the passive permeability coefficient is
varied from 20 to 1,000 nm/s. P = 1,000 nm/s is likely to be an
upper bound for real drugs, and the graph is fairly straight.
As the passive permeability coefficient decreases, the
EadieYHofstee plot becomes more curved. When the passive
permeability coefficient is 20 nm/s, the plot is straight again,
but only the unsaturated part of the curve is shown. A longer
incubation time, exceeding 4 h, would be needed to achieve a
reasonable estimate for Vmax with such small passive per-
meability coefficients.

Another result in Fig. 5 is that the Vmax decreases as the
passive permeability coefficient increases. Simulations have
shown that at least 80% of the P-gp must be bound at the in-
cubation time before the sharp left turn in the EadieYHofstee
plot occurs, moving from small to higher substrate concen-
trations. That is, at least 80% of the P-gp must be bound to
substrate in order for the correct value of Vmax to be esti-
mated. In our simulations, if we had used substrate concen-
trations greater than 100 mM and incubation times exceeding
4 h, straighter lines would have appeared. However, such
conditions have not been used for these cell systems and
P-gp. The results show that steady-state equations, like
EadieYHofstee, convolve the passive permeability coefficient
into the Vmax parameter.

In order for the EadieYHofstee plot to yield realistic
estimates for Km, the curvature of the plot must be taken
into account. The simplest way to allow for curvature in the
EadieYHofstee plot is to use the b parameter in Eqs. (2)
and (3). The meaning of b in terms of elementary P-gp pa-
rameters for these simulations is unclear, but it does not

Fig. 3. EadieYHofstee plot of the quinidine data with V taken at 2 h,

as explained in the text. Error bars are the standard deviation from

triplicates. The straight line is the linear fit for all of the data. Vmax =

1.7 mM/h and Km = 3.7 mM. A curved fit is suggested but not certain

because of the error. Quinidine concentrations were 0.3, 1, 3, 10, 20,

and 30 mM.

Fig. 4. EadieYHofstee plot of model data, from simulations, using

the quinidine elementary parameters in Table I with V taken at 2 h.

Because these are model data, there are no error bars. Substrate

concentrations were 0.3, 1, 3, 10, 30, and 100 mM, which is used for all

subsequent simulations. Vmax = 1.17 mM/h is extrapolated using only

the largest two substrate concentrations.
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represent the number of binding sites because the simulations
used only one binding site.

Figure 6 shows the plot of the model data from Fig. 4
fitted using Eq. (3). Vmax was fixed at 1.2 mM/h at the largest
two substrate concentrations in Fig. 4. Then Km and b can be
fitted by Eq. (3). Although the straight line fits the model
data quite well, there is a slight serpentine curvature in the
model data, which shows that b alone cannot explain all of
the curvature observed in the EadieYHofstee plots. Now we
obtain Km = 2 mM, somewhat smaller than the data in Fig. 3,
and b = 1.5.

Figure 7 shows the MichaelisYMenten plot of the model
quinidine data from Fig. 4. Clearly, the standard Michae-
lisYMenten plot, Eq. (2) with b K 1, does not fit as well as
using the fitted b. Of course, an extra fitting parameter is
used, so the fit should be better. The quinidine data were
fitted the same way, and both experimental and model data
agreed quite well on Vmax, Km, and b, as shown in Table II.
This protocol has demonstrated that the elementary param-
eters for quinidine fitted to the experimental transport curves
generated over 6 h (24) can simulate the EadieYHofstee plots
of the quinidine data. When the same analysis is applied to
loperamide, we obtain the same basic results, except that
b õ 1 (data not shown, see Table II for the results). For

amprenavir, because the data showed no saturation, as
mentioned above, the simulated EadieYHofstee plots could
not be compared with experimental data. However, model
data using the amprenavir elementary parameters from
Table I gave a b = 1.5, like quinidine (data not shown).

We noted above that the time point chosen for the
EadieYHofstee plot would affect the steady-state parameter
estimates. Table II shows the results. Based on the agreement
in Km estimates, it seems for quinidine that 2 h or longer is
needed for the steady-state conditions to apply. Note for the
model data that, as expected, Vmax and Km decreased as the
incubation time increased. It must be reiterated that taking
the velocity term V(t) at earlier time points would reflect the
passive permeation kinetics more than the P-gp efflux.

We now reach the real goal of this work. The final
simulations addressed the question of how well the steady-
state parameters derived from the EadieYHofstee analysis of
model data correlate with the elementary parameters used to
simulate the model data. To make these simulations physi-
ologically relevant, the elementary parameters were limited
to ranges found for amprenavir, quinidine, and loperamide
(denoted as simulation range in Table I). For each parameter
range, a grid was formed to cover each decade of the range
with 3 points. For example, the range covered for k2T(0) was
1 � 10j4 to 1 � 10j2 (M/s), and the grid was [1 � 10j4, 2 �
10j4, 5 � 10j4, 1 � 10j3, . . . , 1 � 10j2].

All possible combinations of elementary parameters
were used, generating 2,335 different elementary parameter
combinations, with each parameter vector signifying a dif-
ferent Bvirtual^ substrate. Each initial vector of parameters

Fig. 6. The fit of model data from the quinidine elementary

parameters in Table I by Eq. (3). Vmax = 1.17 mM/h is extrapolated

only from the largest two concentrations used (Fig. 4). This gives Km

= 2.0 mM and b = 1.5. Because the simulations had only one substrate

binding site, the fact that b > 1 shows that it is not a Hill coefficient,

just the simplest way to allow the EadieYHofstee plot to be curved.

Fig. 7. MichaelisYMenten plots for Eq. (2) for model data using the

quinidine parameters from Table I. V taken at 2 h. The solid lines use

with b fitted (Table II), whereas the dashed line uses b fixed at 1.

Table II. Summary of Fits to Quinidine and Simulations

Incubation time (h) Vmax (mM/h) Km (mM) b

1 1.4 (1.4) 7.8 (2.7) 1.1 (1.5)

2 1.5 (1.2) 2.2 (2.0) 1.4 (1.5)

4 1.0 (0.9) 1.8 (2.0) 1.3 (1.5)

The fitted Vmax, Km, and b values, using Eq. (3), are shown as a
function of incubation time for quinidine and, in parentheses, for
model data without error using the elementary parameters for
quinidine shown in Table I.

Fig. 5. EadieYHofstee plot of model data using the quinidine

elementary parameters in Table I, except that the passive perme-

ability coefficient is varied from 20 to 1,000 nm/s. V taken at 2 h.
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was used for numerical integration of the mass action
reactions with initial substrate concentrations of 0.1, 0.3, 1,
3, 10, 30, and 100 mM, which is the range we used in Tran
et al. (24). EadieYHofstee plots of the model data were
constructed to obtain Vmax from the two highest substrate
concentrations, with b = 1. Then Eq. (3) was used to fit Km

and b.
The fittings were culled to remove poor fits because of

the limited substrate concentration range used. Fits were
rejected when the V for the highest substrate concentration
(100 mM) was smaller than 70% of the predicted Vmax

because the extrapolation was less accurate. This removed
about 40% of the Bvirtual substrates^. Choosing a higher
cutoff, e.g., 80%, did not affect our conclusions and could not
be justified relative to typical experimental procedure, i.e.,
the plots looked straight. The remaining fits showed no other
obvious anomalies.

Our value for k2T(0) uses a T(0) calculated from the
volume of the inner apical monolayer, denoted VAO, whereas
Vmax for a soluble enzyme refers to the enzyme concentration
in the entire aqueous phase. We transformed the molecular
k2T(0) to the value it would take as a Bwater-soluble^ enzyme
dispersed throughout both the Costar Transwell wells, i.e.,

Vmax mol ¼ k2T 0ð Þ*VAO=VT ð4Þ

where VAO is the volume of the inner apical monolayer of all
the cells in the monolayer, estimated at 0.5 nL in Tran et al.

(24), but used exactly here for the simulations, and VT = 2 mL
is the total volume of the wells, 1.5 mL basolateral and 0.5
mL apical. The units are also transformed from M/s to mM/h.

Figure 8 shows the plot of the fitted Vmax vs. Vmax_mol,
the membrane molecular value. The two are very well
correlated, with slope of 1 on the logYlog plot. For a given
Vmax_mol, the fitted values for Vmax varied because of
different passive permeability coefficients P. As P decreased,
Vmax increased because P-gp was less saturated at 2 h, and
Vmax is overestimated because of the curvature of the
EadieYHofstee plot. Thus, for a given Vmax, there is a 2- to

3-fold uncertainty in the molecular Vmax_mol. This strong
correlation could be anticipated because Vmax is the maximal
efflux rate, which is influenced only by the passive perme-
ability and not substrate binding constants or partition
coefficients.

The linear regression of Vmax_mol vs. Vmax in Fig. 8 gave
an approximate relation of:

Vmax mol � 0:75*Vmax ð5Þ

The factor of 0.75 comes from the intercept of the logYlog
plot. Thus, from the fitted Vmax, one can estimate the
molecular Vmax_mol to within a factor of 2Y3.

The situation for Km is more complicated. Fig. 9 shows
the plot for the fitted Km vs. the aqueous version of the
molecular value, i.e.,

Kmax mol uMð Þ ¼ 106* k2 þ krð Þ= k1*KPCð Þ ð6Þ

The solid double-arrowed lines show the range of a Km_mol

for a fitted Km, both bottom and top. Although the fitted Km

is an upper bound for the Km_mol, there is no other
correlation. A fitted Km of the order of 0.1 mM only specifies
a 10-fold range of possible Km_mol values, whereas a fitted
Km of the order of 10 mM only specifies 1,000-fold range of
possible Km_mol values. Actually, the real ranges are even
larger. Following the arrows in Fig. 9 to smaller nM Km

values, it would seem that when the fitted Km is about 50 nM,
then Km_mol would be about the same value. This is an
artifact of restraining our simulations to the grid defined by
amprenavir, loperamide, and quinidine parameters. When
parameter values outside the range shown in Table I were
used to obtain 10-fold smaller Km_mol values, i.e., larger KB

and smaller k2 values, then the lower bound of the fits for
possible Km_mol values was 10-fold smaller than seen in Fig. 9,
õ1 nM. Thus, there is no convergence and perhaps no lower
bound. We could extend our simulations to examine this, but
then we would no longer know whether we were using
physiologically relevant parameters.

Fig. 8. Correlation of fitted Vmax values, using Eq. (4), with Vmax_mol,

defined by Eq. (4), which is simply the transformation of k2T(0) to

the value which P-gp would have as a soluble enzyme Bdispersed^
into the 2-mL transport chamber. For a grid of elementary

parameters for 2,335 Bvirtual^ substrates, defined by the last row of

Table I, model data were simulated and then fitted to Eq. (3) as

described in the text. After culling about 1,000 poor fits, the

remaining 1,338 Vmax/Vmax_mol pairs are shown.

Fig. 9. Correlation between the fitted Km and the elementary

molecular Km_mol, defined by Eq. (6), using the same model data

as in Fig. 8. Obviously, there are many values of Km_mol that give the

same Km, so the correlation is very poor. However, this plot is

formed by families of curves, each one defined by a particular pair of

values for the passive permeability coefficient, P, and the membrane

molecular maximum efflux rate, k2T(0). The quinidine lineage of the

family is shown by the large black points.
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Figure 9 was created using simulated data without
experimental error. Close examination shows that Km is re-
lated to Km_mol by a family of curves. Each curve is defined
by a particular pair of values for the passive permeability
coefficient and the k2T(0). For example, the quinidine
lineage curve [P = 300 nm/s and k2T(0) = 0.001 M/s] is
highlighted by the large black squares in Fig. 9. The curve
itself is a result of different values for the substrate binding
constant, KB, and inner apical membrane partition coeffi-
cient, KPC. In fact, the curve depends only on the product
KPCKB, which would be the binding constant measured from
the concentration of substrate in the cytosol of the cell (i.e.,
the aqueous value of the binding constant). So there is a
mathematical 1Y1 relationship between Km and Km_mol,
which in theory could be used to find the right Km_mol given
Km and the other parameters.

However, this mathematical relationship would be useful
only if it is not too sensitive to typical experimental error. To
test this, we repeated the simulations and fittings with 5 and
10% normally distributed Bexperimental^ error added to the
transported concentrations. Each simulation yielded about
1,300 good EadieYHofstee plots out of the 2,335 initial
vectors. Unfortunately, the family of curves became too
blurred to follow any lineage, and no further analysis was
possible.

DISCUSSION

We have investigated the correlation between the
elementary kinetic parameters that define the transport and
the MichaelisYMenten steady-state parameters fitted to that
transport for a confluent monolayer of MDCKII-hMDR1
cells, which overexpress P-gp. For transport of amphipathic
compounds across a confluent monolayer of cells, there are
two inherent problems with the MichaelisYMenten analysis.
First, access of substrate to P-gp depends on passive
permeability, which is not part of the MichaelisYMenten
analysis. It takes longer times in the cell monolayer system to
reach steady state, where the math is most valid, than in the
more commonly used cell or membrane vesicle suspensions.
The second inherent problem is that there are many
elementary parameters that govern transport, and their
values are convolved into the steady-state parameters of
Vmax and Km.

In Tran et al. (24), we were able to determine the
elementary parameters for three drugs which are good P-gp
substrates (Table I). With this knowledge, we have been able
to assess the quality of the correlation theoretically, i.e.,
where we know the answer, within a domain of the
elementary parameter space we know to be physiologically
relevant.

A grid of 2,335 Bvirtual^ substrates was created, whose
values for passive permeability coefficients, maximum efflux
rate constant, binding constant, and partition coefficient are
approximately bounded by the values found for the three
drugs, as shown in Table I. Because the three drugs studied
yielded the same value for the surface density of efflux active
P-gp, T(0), and for the association rate constant, k1 (24),
those values were used for the simulation.

The substrate concentrations ranged from 0.1 to 100 mM,
which are typical concentrations used in transport experi-

ments. This meant that some parameter vectors would have
the wrong substrate concentration range to yield good fits to
the EadieYHofstee plot. We found that all of these cases
could be identified, and discarded, when V at the largest
substrate concentration, V(100 mM), was less than 70% of the
predicted Vmax. This removed about 40% of the cases. The
remaining 1,338 Bvirtual^ substrates yielded reasonable-
looking EadieYHofstee plots, based on regression coeffi-
cients, i.e., there was no reason to reject them.

The next question was how to compare fitted Vmax and
Km values to the underlying molecular values. When the
molecular value of Vmax = k2T(0) was converted to the value
it would be if P-gp were Bresuspended as a soluble enzyme^
into the aqueous volume of the transport apparatus, defined
as Vmax_mol in Eq. (4), the correlation with Vmax was rather
good. The correlation coefficient was r2 $ 1 and the slope
was 1. To within a factor of 2Y3, Vmax_mol $ 0.75Vmax. This
means that the fitted Vmax can roughly, but consistently,
estimate the molecular values of k2T(0). The range was due
to the range of the passive permeability coefficients used,
which is not part of the classical Vmax definition.

The story for Km is more complex, basically because
more of the elementary parameters that really drive transport
are convolved into the fitted Km. This is unfortunate because
this parameter is the simplest estimate of the substrate
binding constant to P-gp, in vitro and in vivo. Figure 9 shows
that as the fitted value of Km increases from 0.3 to 10 mM
values, typical for current drugs and P-gp, the range of
elementary Km_mol values that could yield that fitted Km

increases from 10- to 1,000-fold. This means that the fitted
Km from experimental data cannot be expected to have
any useful correlation with Km_mol = (kr + k2)/k1. Thus,
two drugs with identical steady-state Km’s for this cell line
are likely to have very different values in vivo. The elemen-
tary kinetic parameters generate the in vivo phenomeno-
logical values for Vmax and Km, based on the local membrane
environment.

For the sake of completeness, it is worth noting that the
relationship between the phenomenological Km and the
molecular Km_mol is not really random. They are associated
by a family of curves. For the quinidine lineage, shown by the
large black points in Fig. 9, the family of points all have P =
300 nm/s and k2T(0) = 10j3 M/s. The product of KPCKB for
the Bvirtual substrates^ comprising this curve determines its
shape. KPCKB is the binding constant of the substrate to P-gp,
relative to the aqueous phase.

Unfortunately, the delineated curves are calculated
using model data without error, which is not experimentally
attainable. We repeated all the simulations, adding 5 and
10% normally distributed error with the MATLAB randn
function, and found that the individual points within a
lineage moved adequately to become interwoven with other
lineages. The curves blur beyond recognition when the data
have error. Thus, when data have error, there is no way to
estimate the value of Km_mol from the fitted Km.

CONCLUSION

Extrapolation of P-gp substrate interactions of the
confluent monolayer system to in vivo can be performed
with far greater confidence when the elementary parameters
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are known. This requires the fitting of transport kinetics over
multiple time points, as we did in Tran et al. (24). Our analysis
of P-gp transport is more complex than previous kinetic an-
alyses because we did not impose the steady-state MichaelisY
Menten equations onto the data. P-glycoprotein active
transport has more than six kinetically important parameters,
which become convolved into the Vmax and Km of the
MichaelisYMenten equation. We believe that this convolu-
tion will ultimately hinder the resolution of P-gp mechanism.
In Tran et al. (24), we took nine time points, from 6 min to 6
h, for at least six substrate concentrations to fit the
elementary rate constants. Here, we have shown that six
substrate concentrations and one incubation time cannot yield
reliable estimates of the molecular Km_mol. We are now
optimizing this analysis to discover how many and which time
points and substrate concentrations are required to fix the
elementary parameters with adequate accuracy.
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